Abstract

Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.

Details

Title
Robust Optimization Design for Turbine Blade-Tip Radial Running Clearance using Hierarchically Response Surface Method
Author
Chen, Zhiying 1 ; Zhou, Ping 1 

 School of Energy and Power Engineering, Beihang University, Beijing 100191, China 
Publication year
2017
Publication date
Nov 2017
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564313369
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.