Abstract

The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient’s age from the 12-lead ECG in the CODE study cohort (n = 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79, p < 0.001), whereas those with ECG-age more than 8 years smaller, have a lower mortality rate (HR 0.78, p < 0.001). Similar results are obtained in the external cohorts ELSA-Brasil (n = 14,236) and SaMi-Trop (n = 1,631). Moreover, even for apparent normal ECGs, the predicted ECG-age gap from the chronological age remains a statistically significant risk predictor. These results show that the AI-enabled analysis of the ECG can add prognostic information.

The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.

Details

Title
Deep neural network-estimated electrocardiographic age as a mortality predictor
Author
Lima, Emilly M 1 ; Ribeiro, Antônio H 2 ; Paixão Gabriela M M 1 ; Ribeiro, Manoel Horta 3 ; Pinto-Filho, Marcelo M 1   VIAFID ORCID Logo  ; Gomes, Paulo R 1   VIAFID ORCID Logo  ; Oliveira, Derick M 4 ; Sabino, Ester C 5   VIAFID ORCID Logo  ; Duncan, Bruce B 6   VIAFID ORCID Logo  ; Giatti Luana 7 ; Barreto, Sandhi M 7 ; Wagner, Meira Jr 4 ; Schön, Thomas B 8   VIAFID ORCID Logo  ; Ribeiro Antonio Luiz P 1   VIAFID ORCID Logo 

 Universidade Federal de Minas Gerais, Telehealth Center, Hospital das Clínicas, Belo Horizonte, Brazil (GRID:grid.8430.f) (ISNI:0000 0001 2181 4888); Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte, Brazil (GRID:grid.8430.f) (ISNI:0000 0001 2181 4888) 
 Universidade Federal de Minas Gerais, Departamento de Ciência da Computação, Belo Horizonte, Brazil (GRID:grid.8430.f) (ISNI:0000 0001 2181 4888); Uppsala University, Department of Information Technology, Uppsala, Sweden (GRID:grid.8993.b) (ISNI:0000 0004 1936 9457) 
 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049) 
 Universidade Federal de Minas Gerais, Departamento de Ciência da Computação, Belo Horizonte, Brazil (GRID:grid.8430.f) (ISNI:0000 0001 2181 4888) 
 Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil (GRID:grid.11899.38) (ISNI:0000 0004 1937 0722) 
 Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Epidemiologia and Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (GRID:grid.8532.c) (ISNI:0000 0001 2200 7498) 
 Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte, Brazil (GRID:grid.8430.f) (ISNI:0000 0001 2181 4888) 
 Uppsala University, Department of Information Technology, Uppsala, Sweden (GRID:grid.8993.b) (ISNI:0000 0004 1936 9457) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564325219
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.