Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hybrid rockets are considered a promising future propulsion alternative for specific applications to solid or liquid rockets. In order to raise their technology readiness level, it is important to perform predictive numerical simulations of their internal ballistics. The objective of this work is to describe and validate a numerical approach based on Reynolds-averaged Navier–Stokes simulations with sub-models for fluid–surface interaction, radiation, chemistry, and turbulence. Particular attention is given to scale effects by considering two different paraffin–oxygen hybrid rocket engines and a simplified grain evolution approach from the initial to the final port diameter. Moreover, a mild sensitivity of the computed regression rate to paraffin’s melting temperature, surface radiation emissivity, and Schmidt numbers is observed. Results highlight the increasing importance of radiation effects at larger scales and pressures. A numerical rebuilding of regression rate and pressure is obtained with simulations at the time-space-averaged port diameter, producing a reasonable agreement with the available experimental data, but a noticeable improvement is obtained by considering the grain evolution in time.

Details

Title
Numerical Simulations of the Internal Ballistics of Paraffin–Oxygen Hybrid Rockets at Different Scales
Author
Bianchi, Daniele  VIAFID ORCID Logo  ; Nasuti, Francesco  VIAFID ORCID Logo 
First page
213
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564481274
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.