It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Precipitation-hardened aluminium and magnesium alloys often contain a uniform distribution of plate-shaped precipitates of intermediate or equilibrium phases that form on rational planes of the matrix phase. Micro-alloying additions can change the identity and/or distribution of these precipitate plates, but the precise roles of the micro-alloying elements in the formation of such precipitate plates are still a subject of debate. A key reason for this is the lack of direct experimental observation of the details of the distribution/segregation of these elements in and surrounding precipitates from conventional transmission electron microscopy. While the advent of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) provides much more information at the atomic-scale, there is still a need for performing atomic-resolution chemical mapping using advanced STEM techniques, such as energy-dispersive X-ray spectroscopy (EDS-STEM) and/or electron energy-loss spectroscopy (EELS-STEM), if the precise roles of the micro-alloying elements are to be revealed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia