Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Research has estimated that the majority of domestic cats are overweight or obese. Current weight-loss plans tend to have disappointing outcomes and are not without risk. During periods of severe energy restriction, obesity predisposes cats to developing fatty liver. Choline has been linked to fat metabolism in other animals but has not been studied in cats. Twelve obese cats were split into two groups and were fed a control diet (n = 6; 4587 mg choline/kg dry matter) or a high choline diet (n = 6; 18,957 mg choline/kg DM) for 5 weeks. Cats were fed to maintain body weight. Choline increased serum cholesterol, triacylglycerides, lipoproteins, and plasma methionine. It also decreased serum blood urea nitrogen and alkaline phosphatase as well as the ratio of plasma acylcarnitine to free carnitine. The results suggest that choline supplementation may increase fat transport out of the liver and help maintain liver health in obese cats. Choline supplementation may prove useful for safe weight loss in obese cats by minimizing the risks of fatty liver.

Abstract

Obesity is a health concern for domestic cats. Obesity and severe energy restriction predispose cats to feline hepatic lipidosis. As choline is linked to lipid metabolism, we hypothesized that dietary choline supplementation would assist in reducing hepatic fat through increased lipoprotein transport and fatty acid oxidation. Twelve obese cats (body condition score [BCS] ≥ 8/9) were split into two groups. Cats were fed a control (n = 6; 4587 mg choline/kg dry matter [DM]) or a high choline diet (n = 6; 18,957 mg choline/kg DM) for 5 weeks, for adult maintenance. On days 0 and 35, fasted blood was collected, and the body composition was assessed. Serum lipoprotein and biochemistry profiles, plasma amino acids and plasma acylcarnitines were analyzed. The body weight, BCS and body composition were unaffected (p > 0.05). Choline increased the serum cholesterol, triacylglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol and plasma methionine (p < 0.05) and decreased the serum blood urea nitrogen and alkaline phosphatase (p < 0.05). Choline also reduced the plasma acylcarnitine to free carnitine ratio (p = 0.006). Choline may assist in eliminating hepatic fat through increased fat mobilization and enhanced methionine recycling.

Details

Title
Serum Lipid, Amino Acid and Acylcarnitine Profiles of Obese Cats Supplemented with Dietary Choline and Fed to Maintenance Energy Requirements
Author
Verbrugghe, Adronie 1 ; Rankovic, Alexandra 2 ; Armstrong, Shafeeq 3 ; Santarossa, Amanda 1 ; Kirby, Gordon M 2 ; Bakovic, Marica 3 

 Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; [email protected] 
 Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; [email protected] (A.R.); [email protected] (G.M.K.) 
 Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; [email protected] (S.A.); [email protected] (M.B.) 
First page
2196
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564511981
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.