Abstract

Dynamic aging precipitation of Mg17Al12 phases in AZ80 magnesium alloy was studied by multi-directional forging (MDF) with decreasing temperatures from 410 to 300 °C. The results show that the morphology of the dynamically precipitated β-Mg17Al12 phases (formed during forging process) exhibited granular shape. During the multi-directional forging process, the inhomogeneous dynamic precipitation of the β-Mg17Al12 phases result in the coexistence of the fine grains (with many granular Mg17Al12 phases) and coarse grains (without Mg17Al12 phases) in the samples. The fine grains (with many granular Mg17Al12 phases) area expands with the decreasing of final forging temperature. The inhomogenous Al content distribution in the Mg matrix leads to the non-uniform dynamic precipitation of the Mg17Al12 phase. These Mg17Al12 phase retards the growth of the DRX grains, which in turns results in the formation fine grains area during the during the MDF process with temperature decreasing.

Details

Title
Dynamic strain aging precipitation of Mg17Al12 in AZ80 magnesium alloy during multi-directional forging process
Author
Zhu, Q F 1 ; Wang, G S 1 ; Wang, X J 1 ; Liu, F Z 1 ; Ban, C Y 1 ; Cui, J Z 1 

 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, P.R. China; School of Materials Science and Engineering, Northeastern University, Shenyang, P.R. China 
Publication year
2017
Publication date
May 2017
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564600196
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.