Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

This novel approach combines the advantages of both STPA and the complex network. It is useful for the identification and evaluation of hazardous factors regarding the safety of the intended functionality (SOTIF). This approach can be applied to driving assistance systems with complex sensors and AI algorithms, one of which is the Intelligent Railway Driving Assistance System.

Abstract

The Intelligent Railway Driving Assistance System (IRDAS) is a novel kind of onboard system that relies on its own situational awareness function to ensure the safety and efficiency of train driving. In such systems, the use of situational awareness brings about a new fault-free safety problem, i.e., the safety of the intended functionality (SOTIF). It is essential to analyze the SOTIF-related hazardous factors for ensuring a safe train operation. In this paper, a hazard analysis approach is proposed to capture and evaluate SOTIF-related hazardous factors of IRDAS. This approach consists of an extended STPA-based hazardous factor identification part and a complex network-based hazardous factor evaluation part. In the first part, an extended control structure of STPA is designed for the modeling of the situational awareness process, followed by a new classification of SOTIF-related causal scenarios to assist the identification of causal scenarios. In the second part, a modeling method for heterogeneous complex networks and some customized topological indexes are proposed to evaluate the hazardous factors identified in the STPA causal analysis. The outcomes of the approach can help develop targeted hazard control strategies. The proposed approach has been applied to a new IRDAS operating in Tsuen Wan Line of Hong Kong MTR. The result shows that the approach is effective for the analysis of hazardous factors and is helpful for the formulation of hazard control strategies.

Details

Title
A Hazard Analysis Approach for the SOTIF in Intelligent Railway Driving Assistance Systems Using STPA and Complex Network
Author
Zhang, Shijie 1 ; Tang, Tao 1 ; Liu, Jintao 2   VIAFID ORCID Logo 

 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; [email protected] (S.Z.); [email protected] (T.T.) 
 National Research Center of Railway Safety Assessment, Beijing Jiaotong University, Beijing 100044, China 
First page
7714
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564619464
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.