Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Battery thermal management systems (BTMS) are hugely important in enhancing the lifecycle of batteries and promoting the development of electric vehicles. The cooling effect of BTMS can be improved by optimizing its structural parameters. In this paper, flow resistance and heat dissipation models were used to optimize the structure of BTMS, which were more efficient than the computational fluid dynamics method. Subsequently, five structural parameters that affect the temperature inside the battery pack were analyzed using single-factor sensitivity analysis under different inlet airflow rates, and three structural parameters were selected as the constraints of a stud genetic algorithm. In this stud genetic algorithm, the maximal temperature difference obtained by the heat dissipation model was within 5K as the constraint function, where the objective function minimized the overall area of the battery pack. The BTMS optimized by the stud genetic algorithm was reduced by 16% in the maximal temperature difference and saved 6% of the battery package area compared with the original BTMS. It can be concluded that the stud genetic algorithm combined with the flow resistance network and heat dissipation models can quickly and efficiently optimize the air-cooled BTMS to improve the cooling performance.

Details

Title
Structure Optimization of Battery Thermal Management Systems Using Sensitivity Analysis and Stud Genetic Algorithms
Author
Chen, Jiahui; Dongji Xuan  VIAFID ORCID Logo  ; Wang, Biao
First page
7440
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564635295
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.