Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the leading mobile phone operating system, Android is an attractive target for malicious applications trying to exploit the system’s security vulnerabilities. Although several approaches have been proposed in the research literature for the detection of Android malwares, many of them suffer from issues such as small training datasets, there are few features (most studies are limited to permissions) that ultimately affect their performance. In order to address these issues, we propose an approach combining advanced machine learning techniques and Android vulnerabilities taken from the AndroVul dataset, which contains a novel combination of features for three different vulnerability levels, including dangerous permissions, code smells, and AndroBugs vulnerabilities. Our approach relies on that dataset to train Deep Learning (DL) and Support Vector Machine (SVM) models for the detection of Android malware. Our results show that both models are capable of detecting malware encoded in Android APK files with about 99% accuracy, which is better than the current state-of-the-art approaches.

Details

Title
Deep Learning Based Android Anomaly Detection Using a Combination of Vulnerabilities Dataset
Author
Namrud, Zakeya 1   VIAFID ORCID Logo  ; Kpodjedo, Sègla 1 ; Chamseddine Talhi 1 ; Bali, Ahmed 1 ; Alvine Boaye Belle 2 

 Department of Software and IT Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada; [email protected] (S.K.); [email protected] (C.T.); [email protected] (A.B.) 
 Department of Electrical Engineering and Computer Science, York University, Toronto, ON M2J 4A6, Canada; [email protected] 
First page
7538
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564636414
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.