Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The shunt active power filter (SAPF) is a widely used tool for compensation of disturbances in three-phase electric power systems. A high number of control methods have been successfully developed, including strategies based on artificial neural networks. However, the typical feedforward neural network, the multilayer perceptron, which has provided effective solutions to many nonlinear problems, has not yet been employed with satisfactory performance in the implementation of the SAPF control for obtaining the reference currents. In order to prove the capabilities of this simple neural topology, this work describes a suitable strategy of use, based on the accurate estimation of the Fourier coefficients corresponding to the fundamental harmonic of any distorted voltage or current. An effective training method has been developed, consisting of the use of many distorted patterns. The new generation procedure uses random combinations of multiple harmonics, including the possible nominal frequency deviations occurring in real power systems. The design of the generation of reference signals through computations based on the Fourier coefficients is presented. The objectives were the harmonic mitigation and power factor correction. Practical cases were tested through simulation and also by using an experimental platform, showing the feasibility of the proposal.

Details

Title
Nonlinear Loads Compensation Using a Shunt Active Power Filter Controlled by Feedforward Neural Networks
Author
Flores-Garrido, Juan L 1   VIAFID ORCID Logo  ; Salmerón, Patricio 1 ; Gómez-Galán, Juan A 2   VIAFID ORCID Logo 

 Department of Electrical Engineering, University of Huelva, 21007 Huelva, Spain; [email protected] (J.L.F.-G.); [email protected] (P.S.) 
 Department of Electronic Engineering, Computer Systems, and Automatics, University of Huelva, 21007 Huelva, Spain 
First page
7737
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564642437
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.