Abstract

Wind turbine power curve expresses the relationship between the rotor power and the hub wind speed. Wind turbine power curve prediction is of vital importance for power control and wind energy management. To predict power curve, the Blade Element Moment (BEM) method is used in both academic and industrial communities. Due to the limited range of angles of attack measured in wind tunnel testing and the three-dimensional (3D) rotational augmentation effects in rotating turbines, wind turbine power curve prediction remains a challenge especially at high wind speeds. This paper presents an investigation of considering the rotational augmentation effects using characterized lift and drag coefficients from 3D computational fluid dynamics (CFD) simulations coupled in the BEM method. A Matlab code was developed to implement the numerical calculation. The predicted power outputs were compared with the NREL Phase VI wind turbine measurements. The results demonstrate that the coupled method improves the wind turbine power curve prediction.

Details

Title
Wind turbine power curve prediction with consideration of rotational augmentation effects
Author
Tang, X 1 ; Huang, X 1 ; Sun, S 1 ; Peng, R 1 

 School of Mechanical Engineering, Xiangtan University, 411105 Hunan, China 
Publication year
2016
Publication date
Nov 2016
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564668602
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.