Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study evaluates the performance of alkali-activated slag-fly ash blended concrete made with recycled concrete aggregates (RCA) and reinforced with steel fibers. Two blends of concrete with ground granulated blast furnace slag-to-fly ash ratios of 3:1 and 1:1 were used. Natural aggregates were substituted with RCA, while macro steel fibers with 35 mm of length and aspect ratio of 65 were incorporated in RCA-based mixtures at various volume fractions. Fine aggregates were in the form of desert dune sand. Mechanical and durability characteristics were investigated. Experimental results revealed that RCA replacement decreased the compressive strength of plain concrete mixtures with more pronounced reductions being perceived at higher replacement percentages. Mixtures made with 30%, 70%, and 100% RCA could be produced with limited loss in the design compressive strength upon incorporating 1%, 2%, and 2% steel fibers, by volume, respectively. In turn, splitting tensile strength was comparable to the NA-based control while adding at least 1% steel fiber, by volume. Moreover, higher water absorption and capillary sorptivity and lower ultrasonic pulse velocity, bulk resistivity, and abrasion resistance were reported during RCA replacement. Meanwhile, incorporation of steel fibers densified the concrete and enhanced its resistance to abrasive forces, water permeation, and water transport. Analytical regression models were developed to correlate hardened concrete properties to the 28-day cylinder compressive strength.

Details

Title
Performance of Steel Fiber-Reinforced Alkali-Activated Slag-Fly Ash Blended Concrete Incorporating Recycled Concrete Aggregates and Dune Sand
Author
Abdalla Hussein; Medljy, Jamal; El-Maaddawy, Tamer  VIAFID ORCID Logo 
First page
327
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564744171
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.