Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Cancer cachexia is a devastating wasting syndrome that occurs in many illnesses, with signs and symptoms including anorexia, weight loss, cognitive impairment and fatigue. The brain is capable of exerting overarching homeostatic control of whole-body metabolism and is increasingly being recognized as an important mediator of cancer cachexia. Given the increased recognition and discovery of neural mechanisms of cancer cachexia, we sought to provide an in-depth review and update of mechanisms by which the brain initiates and propagates cancer cachexia programs. Furthermore, recent work has identified new molecular mediators of cachexia that exert their effects through their direct interaction with the brain. Therefore, this review will summarize neural mechanisms of cachexia and discuss recently identified neural mediators of cancer cachexia.

Abstract

Nearly half of cancer patients suffer from cachexia, a metabolic syndrome characterized by progressive atrophy of fat and lean body mass. This state of excess catabolism decreases quality of life, ability to tolerate treatment and eventual survival, yet no effective therapies exist. Although the central nervous system (CNS) orchestrates several manifestations of cachexia, the precise mechanisms of neural dysfunction during cachexia are still being unveiled. Herein, we summarize the cellular and molecular mechanisms of CNS dysfunction during cancer cachexia with a focus on inflammatory, autonomic and neuroendocrine processes and end with a discussion of recently identified CNS mediators of cachexia, including GDF15, LCN2 and INSL3.

Details

Title
Neural Mechanisms of Cancer Cachexia
Author
Olson, Brennan 1   VIAFID ORCID Logo  ; Parham Diba 1   VIAFID ORCID Logo  ; Korzun, Tetiana 1   VIAFID ORCID Logo  ; Marks, Daniel L 2   VIAFID ORCID Logo 

 Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; [email protected] (B.O.); [email protected] (P.D.); [email protected] (T.K.); Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA 
 Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA 
First page
3990
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564777288
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.