Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although Hom Mali rice is considered the highest quality rice in Thailand, it is susceptible to adulteration and substitution. There is a need for rapid, low-cost and efficient analytical techniques for monitoring the authenticity and geographical origin of Thai Hom Mali rice. In this study, two infrared spectroscopy techniques, Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) and near-infrared (NIR) spectroscopy, were applied and compared for the differentiation of Thai Hom Mali rice from two geographical regions over two production years. The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model, built using spectral data from the benchtop FTIR-ATR, achieved 96.97% and 100% correct classification of the test dataset for each of the production years, respectively. The OPLS-DA model, built using spectral data from the portable handheld NIR, achieved 84.85% and 86.96% correct classification of the test dataset for each of the production years, respectively. Direct NIR analysis of the polished rice grains (i.e., no sample preparation) was determined as reliable for analysis of ground rice samples. FTIR-ATR and NIR spectroscopic analysis both have significant potential as screening tools for the rapid detection of fraud issues related to the geographical origin of Thai Hom Mali rice.

Details

Title
Geographical Differentiation of Hom Mali Rice Cultivated in Different Regions of Thailand Using FTIR-ATR and NIR Spectroscopy
Author
Srinuttrakul, Wannee 1 ; Mihailova, Alina 2   VIAFID ORCID Logo  ; Islam, Marivil D 2 ; Liebisch, Beatrix 2 ; Maxwell, Florence 2   VIAFID ORCID Logo  ; Kelly, Simon D 2 ; Cannavan, Andrew 2   VIAFID ORCID Logo 

 Research and Development Division, Thailand Institute of Nuclear Technology, Sai Mun, Ongkharak, Nakhon Nayok 26120, Thailand; [email protected] 
 Food and Environmental Protection Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; [email protected] (M.D.I.); [email protected] (B.L.); [email protected] (F.M.); [email protected] (S.D.K.); [email protected] (A.C.) 
First page
1951
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565230775
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.