Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Remote sensing techniques based on images acquired from unmanned aerial vehicles (UAVs) could represent an effective tool to speed up the data acquisition process in phenotyping trials and, consequently, to reduce the time and cost of the field work. In this study, we assessed the ability of a UAV equipped with RGB-NIR cameras in highlighting differences in geometrical and spectral canopy characteristics between eight olive cultivars planted at different planting distances in a hedgerow olive orchard. The relationships between measured and estimated canopy height, projected canopy area and canopy volume were linear regardless of the different cultivars and planting distances (RMSE of 0.12 m, 0.44 m2 and 0.68 m3, respectively). A good relationship (R2 = 0.95) was found between the pruning mass material weighted on the ground and its volume estimated by aerial images. NDVI measured in February 2019 was related to fruit yield per tree measured in November 2018, whereas no relationships were observed with the fruit yield measured in November 2019 due to abiotic and biotic stresses that occurred before harvest. These results confirm the reliability of UAV imagery and structure from motion techniques in estimating the olive geometrical canopy characteristics and suggest further potential applications of UAVs in early discrimination of yield efficiency between different cultivars and in estimating the pruning material volume.

Details

Title
High-Resolution UAV Imagery for Field Olive (Olea europaea L.) Phenotyping
Author
Caruso, Giovanni 1 ; Palai, Giacomo 1   VIAFID ORCID Logo  ; Marra, Francesco Paolo 2   VIAFID ORCID Logo  ; Caruso, Tiziano 2   VIAFID ORCID Logo 

 Department of Agriculture, Food and Environment, University di Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 
 Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; [email protected] (F.P.M.); [email protected] (T.C.) 
First page
258
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23117524
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565248171
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.