Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Self-passivating Metal Alloys with Reduced Thermo-oxidation (SMART) are under development for the primary application as plasma-facing materials for the first wall in a fusion DEMOnstration power plant (DEMO). SMART materials must combine suppressed oxidation in case of an accident and an acceptable plasma performance during the regular operation of the future power plant. Modern SMART materials contain chromium as a passivating element, yttrium as an active element and a tungsten base matrix. An overview of the research and development program on SMART materials is presented and all major areas of the structured R&D are explained. Attaining desired performance under accident and regular plasma conditions are vital elements of an R&D program addressing the viability of the entire concept. An impressive more than 104-fold suppression of oxidation, accompanied with more than 40-fold suppression of sublimation of tungsten oxide, was attained during an experimentally reproduced accident event with a duration of 10 days. The sputtering resistance under DEMO-relevant plasma conditions of SMART materials and pure tungsten was identical for conditions corresponding to nearly 20 days of continuous DEMO operation. Fundamental understanding of physics processes undergone in the SMART material is gained via fundamental studies comprising dedicated modeling and experiments. The important role of yttrium, stabilizing the SMART alloy microstructure and improving self-passivating behavior, is under investigation. Activities toward industrial up-scale have begun, comprising the first mechanical alloying with an industrial partner and the sintering of a bulk SMART alloy sample with dimensions of 100 mm × 100 mm × 7 mm using an industrial facility. These achievements open the way to further expansion of the SMART technology toward its application in fusion and potentially in other renewable energy sources such as concentrated solar power stations.

Details

Title
Advanced Self-Passivating Alloys for an Application under Extreme Conditions
Author
Litnovsky, Andrey 1   VIAFID ORCID Logo  ; Klein, Felix 2   VIAFID ORCID Logo  ; Tan, Xiaoyue 3 ; Ertmer, Janina 4 ; Coenen, Jan W 5   VIAFID ORCID Logo  ; Linsmeier, Christian 2   VIAFID ORCID Logo  ; Gonzalez-Julian, Jesus 2   VIAFID ORCID Logo  ; Martin, Bram 2   VIAFID ORCID Logo  ; Povstugar, Ivan 6   VIAFID ORCID Logo  ; Morgan, Thomas 7 ; Gasparyan, Yury M 8   VIAFID ORCID Logo  ; Suchkov, Alexey 9 ; Bachurina, Diana 9 ; Nguyen-Manh, Duc 10   VIAFID ORCID Logo  ; Gilbert, Mark 10 ; Sobieraj, Damian 11 ; Wróbel, Jan S 11   VIAFID ORCID Logo  ; Tejado, Elena 12   VIAFID ORCID Logo  ; Matejicek, Jiri 13   VIAFID ORCID Logo  ; Zoz, Henning 14 ; Hans Ulrich Benz 14 ; Bittner, Pawel 2 ; Reuban, Anicha 2   VIAFID ORCID Logo 

 Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany; [email protected] (F.K.); [email protected] (X.T.); [email protected] (J.E.); [email protected] (J.W.C.); [email protected] (C.L.); [email protected] (J.G.-J.); [email protected] (M.B.); [email protected] (P.B.); [email protected] (A.R.); Plasma Physics Department, Institute of Laser and Plasmas Technologies, National Research Nuclear University MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia; [email protected] 
 Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany; [email protected] (F.K.); [email protected] (X.T.); [email protected] (J.E.); [email protected] (J.W.C.); [email protected] (C.L.); [email protected] (J.G.-J.); [email protected] (M.B.); [email protected] (P.B.); [email protected] (A.R.) 
 Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany; [email protected] (F.K.); [email protected] (X.T.); [email protected] (J.E.); [email protected] (J.W.C.); [email protected] (C.L.); [email protected] (J.G.-J.); [email protected] (M.B.); [email protected] (P.B.); [email protected] (A.R.); School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 
 Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany; [email protected] (F.K.); [email protected] (X.T.); [email protected] (J.E.); [email protected] (J.W.C.); [email protected] (C.L.); [email protected] (J.G.-J.); [email protected] (M.B.); [email protected] (P.B.); [email protected] (A.R.); Department of Applied Physics, Ghent University, 9000 Ghent, Belgium 
 Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany; [email protected] (F.K.); [email protected] (X.T.); [email protected] (J.E.); [email protected] (J.W.C.); [email protected] (C.L.); [email protected] (J.G.-J.); [email protected] (M.B.); [email protected] (P.B.); [email protected] (A.R.); Department of Engineering Physics, University of Wisconsin–Madison, Madison, WI 53706, USA 
 Forschungszentrum Jülich GmbH, Zentralinstitut für Engineering, Elektronik und Analytik, 52425 Jülich, Germany; [email protected] 
 DIFFER—Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands; [email protected] 
 Plasma Physics Department, Institute of Laser and Plasmas Technologies, National Research Nuclear University MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia; [email protected] 
 Department of Materials Science, Institute of Nuclear Physics and Engineering, National Research Nuclear University MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia; [email protected] (A.S.); [email protected] (D.B.) 
10  CCFE, United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK; [email protected] (D.N.-M.); [email protected] (M.G.) 
11  Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; [email protected] (D.S.); [email protected] (J.S.W.) 
12  Departamento de Ciencia de Materiales-CIME, Universidad Politécnica de Madrid, C/Profesor Aranguren 3, E28040 Madrid, Spain; [email protected] 
13  Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 3, 18200 Praha, Czech Republic; [email protected] 
14  Zoz Group, Maltoz-Str., 57482 Wenden, Germany; [email protected] (H.Z.); [email protected] (H.U.B.) 
First page
1255
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565414115
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.