Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The silicon/carbon nanotube (core/shell) nanocomposite electrode model is one of the most promising solutions to the problem of electrode pulverization in lithium-ion batteries. The purpose of this study is to analyze the mechanical behaviors of silicon/carbon nanotube nanocomposites via molecular dynamics computations. Fracture behaviors of the silicon/carbon nanotube nanocomposites subjected to tension were compared with those of pure silicon nanowires. Effective Young’s modulus values of the silicon/carbon nanotube nanocomposites were obtained from the stress and strain responses and compared with the asymptotic solution of continuum mechanics. The size effect on the failure behaviors of the silicon/carbon nanotube nanocomposites with a fixed longitudinal aspect ratio was further explored, where the carbon nanotube shell was found to influence the brittle-to-ductile transition behavior of silicon nanowires. We show that the mechanical reliability of brittle silicon nanowires can be significantly improved by encapsulating them with carbon nanotubes because the carbon nanotube shell demonstrates high load-bearing capacity under tension.

Details

Title
Mechanical Behaviors of Si/CNT Core/Shell Nanocomposites under Tension: A Molecular Dynamics Analysis
Author
Shim, Jee Soo  VIAFID ORCID Logo  ; Lee, Gi Hun  VIAFID ORCID Logo  ; Cheng Yu Cui
First page
1989
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565476101
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.