Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Zirconia (ZrO2) aerogels show excellent insulating performance and have been widely applied as a thermal protector in furnaces, nuclear reactors, and spacecraft. The nondestructive determination of their interior microstructure is significant for evaluating their mechanical and insulating performance. In this study, we performed nondestructive structural investigation of an yttria-stabilized ZrO2 fiber insulation tile using synchrotron X-ray in-line phase-contrast microtomography at a pixel resolution of 6.5 µm. Taking advantage of the edge enhancement of phase-contrast imaging, single yttria-stabilized ZrO2 fibers were clearly distinguished; furthermore, interior aggregates were nondestructively observed at this spatial resolution. This work demonstrates the advantages and potential of synchrotron X-ray microtomography for the structural analysis of porous ceramic materials. By combining higher-brilliance synchrotron radiation sources and CCD detectors with higher spatial and temporal resolutions, we anticipate that we can further understand the relationship between aerogel microstructure and function, especially under in-service conditions at high temperatures.

Details

Title
Nondestructive Structural Investigation of Yttria-Stabilized Zirconia Fiber Insulation Tile by Synchrotron X-ray In-Line Phase-Contrast Microtomography
Author
Yao, Shengkun 1   VIAFID ORCID Logo  ; Liu, Benxue 2 ; Ren, Jing 1 ; Liu, Jingwen 1 ; Meili Qi 3 ; Cai, Yangjian 1 

 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; [email protected] (J.R.); [email protected] (J.L.); [email protected] (Y.C.); Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China 
 Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; [email protected] 
 School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China; [email protected] 
First page
338
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565487835
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.