Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Malignant melanoma accounts for about 1–3% of all malignancies in the West, especially in the United States. More than 9000 people die each year. In general, it is difficult to characterize a skin lesion from a photograph. In this paper, we propose a deep learning-based computer-aided diagnostic algorithm for the classification of malignant melanoma and benign skin tumors from RGB channel skin images. The proposed deep learning model constitutes a tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to classify skin lesions in dermoscopy images. We implement an algorithm to classify malignant melanoma and benign tumors using skin lesion images and expert labeling results from convolutional neural networks. The U-Net model achieved a dice similarity coefficient of 81.1% compared to the expert labeling results. The classification accuracy of malignant melanoma reached 80.06%. As a result, the proposed AI algorithm is expected to be utilized as a computer-aided diagnostic algorithm to help early detection of malignant melanoma.

Details

Title
Computer-Aided Diagnosis Algorithm for Classification of Malignant Melanoma Using Deep Neural Networks
Author
Chan-Il, Kim 1 ; Seok-Min Hwang 1 ; Eun-Bin Park 1 ; Chang-Hee, Won 2 ; Jong-Ha, Lee 2   VIAFID ORCID Logo 

 Department of Biomedical Engineering, Keimyung University, Daegu 42601, Korea; [email protected] (C.-I.K.); [email protected] (S.-M.H.); [email protected] (E.-B.P.) 
 Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA; [email protected] 
First page
5551
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565707222
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.