Abstract

The lightest and simplest arrangement of protons and electrons is a hydrogen atom. One of the wave characteristics of an atom can be known using the Schrodinger equation. Schrodinger’s equations of spherical coordinates consist of radial equations and angular equations. Quantum numbers 4≤ n ≤ 5from the Schrodinger equation sphere coordinates produce different angular wave functions. To find out the angular wave equation using normalization conditions \({B}_{lm}={({-}1)}^{{(m+|m|)}/2}\sqrt{\frac{2l+1(l-|m|)!}{2\,\,\,(l+|m|)!}}\sqrt{\frac{1}{2\pi }}\) . Based on the normalization conditions for n = 4 a wave function is produced \({Y}_{3,3}(\theta \varphi )={({-}1)}^{(3+|3|/2)}\sqrt{\frac{2.3+1(3-|3|)!}{4\pi\,\,\,(3+|3|)!}}{P}_{3}^{3}(cos\theta ){e}^{3i\varphi }\) , while for n = 5 a wave function is \({Y}_{4,4}(\theta \varphi )={({-}1)}^{(4+|4|/2)}\sqrt{\frac{2.4+1(4-|4|)!}{4\pi\,\,\,(4+|4|)!}}{P}_{4}^{4}(cos\theta ){e}^{4i\varphi }\) .

Details

Title
Solution of spherical equation in 3 dimensions for hydrogen atom with quantum numbers 4≤ n≤ 5
Author
Supriadi, B 1 ; Ridlo, Z R 1 ; Fuadah, F 1 ; Halim, M A 1 ; Maulana, M 1 ; Santoso, Y R 1 

 Physics Education Departement, University of Jember, Jember, Indonesia 
Publication year
2019
Publication date
Apr 2019
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2566130756
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.