It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Biochar is a solid material obtained from the thermochemical conversion of biomass in a limited oxygen environment. Portland cement-based products are the main construction materials. The manufacturing process of cement result in several harmful emissions, in particular CO2 emissions. In this work, biochar was produce from residues of palm oil shells stover at 700°C under a limited oxygen condition. Biochar small additions of 0.1, 0.33 and 0.5 % (w/w) were incorporated into Portland cement mortar samples. Mortar samples were made according to the Colombian earthquake-resistant standard. Early compression strength of samples were evaluated at 7, 14, 21 and 28 days. Mortar samples were subjected to an accelerated carbonation test using a carbonation chamber built for that purpose. Results shows that the early compression strength was altered since mortar with no biochar additions exhibit higher compression resistance that the ones exhibited by samples with small additions. Furthermore, this decreasing in the early compression strength is attributed to the presence of the surfactant used to incorporate the small amount of biochar into the cement matrix. Carbonation result shows that samples with small additions of biochar increases the measured carbonation depth.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín UdeM, Carrera 87 No 30 – 65, Medellín, Colombia
2 Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia