It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the previous ENETWILD model, the predicted patterns of wild boar abundance based on hunting yield data reached an acceptable reliability when the model was downscaled to higher spatial resolution. This new approach, based on the modelling of hunting yield densities instead of hunting yield counts and the assessment of spatial autocorrelation, was only applied with simulated data and with data from two regions at hunting ground level, the smallest spatial resolution. In this report, (1) we evaluate whether this approach can correct the overpredictions for high-resolution predicted patterns when raw data are present at a different spatial resolution (i.e. the European region). For this purpose, hunting yield densities were incorporated as response variable (one model per bioregion) and predictions reliability at 10x10km and 2x2km spatial resolution were assessed. Internal validations and comparisons with the previous two-step model carried out at European scale were addressed, as well as an evaluation with external data at the same scale at country level. The model presented certain overprediction (much less than the previous model) of the total hunting bags reported per country, although a good correlation in terms of values and linearity between observed and predicted values was achieved. Secondly (2), a generic model framework to predict habitat suitability and likely occurrence for wildlife species using opportunistic presence data was proposed (occurrence records for wild ungulate species from the past 20 years exclusively from the Global Biodiversity Information Facility extracted on 9/12/2020). Across all wild ungulate species (elk (Alces alces), roe deer (Capreolus capreolus), red deer (Cervus elaphus), dam deer (Dama dama), muntjac (Muntiacus reevesi), wild boar (Sus scrofa)) the model framework performs well. For those species where area under the curve is below 0.7 we note lower accuracy in predicting absences, which requires further investigation to understand the root cause; whether a result of underlying assumptions regarding the testing data or due to the model performance itself.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer