It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Diabetic Retinopathy remains one of the most feared diabetes complications that could lead to blindness. Image processing techniques have been widely used all around the world for early detection of diabetic retinopathy. However, most techniques used do not focus on the low visual quality problems in the fundus image. Low visual quality of fundus image may lead to difficulty in evaluation by ophthalmologist before reading it out to the patients. Hence, Automated Screening for Diabetic Retinopathy was created to focus on image enhancement of the fundus image. In this study, two main algorithms for image processing have been used which are green channel conversion and top-hat filters. Green channel in fundus image is selected due to better contrast of the features and background compared to the red and blue channel. While Top-hat filter used to details out small features in the fundus image. The evaluation result of the techniques is compared by using Mean-Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Entropy calculations to measure quality of the enhanced fundus images. Results of image enhancement techniques implemented has proved that quality of the fundus image is improved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Data Science Res Lab, School of Computing, Universiti Utara Malaysia, Kedah, Malaysia
2 School of Computing, Universiti Utara Malaysia, Kedah, Malaysia
3 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
4 Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.