It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Some of the simplest modifications to general relativity involve the coupling of additional scalar fields to the scalar curvature. By making a Weyl rescaling of the metric, these theories can be mapped to Einstein gravity with the additional scalar fields instead being coupled universally to matter. The resulting couplings to matter give rise to scalar fifth forces, which can evade the stringent constraints from local tests of gravity by means of so-called screening mechanisms. In this talk, we derive evolution equations for the matrix elements of the reduced density operator of a toy matter sector by means of the Feynman-Vernon influence functional. In particular, we employ a novel approach akin to the LSZ reduction more familiar to scattering-matrix theory. The resulting equations allow the analysis, for instance, of decoherence induced in atom-interferometry experiments by these classes of modified theories of gravity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
2 Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam; Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK; School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK; Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK