Abstract

Despite progressive improvements over the decades, the rich temporally resolved data in an echocardiogram remain underutilized. Human assessments reduce the complex patterns of cardiac wall motion, to a small list of measurements of heart function. All modern echocardiography artificial intelligence (AI) systems are similarly limited by design – automating measurements of the same reductionist metrics rather than utilizing the embedded wealth of data. This underutilization is most evident where clinical decision making is guided by subjective assessments of disease acuity. Predicting the likelihood of developing post-operative right ventricular failure (RV failure) in the setting of mechanical circulatory support is one such example. Here we describe a video AI system trained to predict post-operative RV failure using the full spatiotemporal density of information in pre-operative echocardiography. We achieve an AUC of 0.729, and show that this ML system significantly outperforms a team of human experts at the same task on independent evaluation.

The echocardiogram allows for a comprehensive assessment of the cardiac musculature and valves, but its rich temporally resolved data remain underutilized. Here, the authors develop a video AI system trained to predict post-operative right ventricular failure.

Details

Title
Predicting post-operative right ventricular failure using video-based deep learning
Author
Shad Rohan 1   VIAFID ORCID Logo  ; Quach, Nicolas 1   VIAFID ORCID Logo  ; Fong, Robyn 1 ; Patpilai, Kasinpila 1 ; Bowles Cayley 1 ; Castro, Miguel 2 ; Guha Ashrith 2 ; Suarez, Erik E 3 ; Jovinge Stefan 4   VIAFID ORCID Logo  ; Lee, Sangjin 4 ; Boeve Theodore 4 ; Amsallem Myriam 5 ; Tang, Xiu 5 ; Haddad, Francois 5   VIAFID ORCID Logo  ; Shudo Yasuhiro 1 ; Joseph, Woo Y 1   VIAFID ORCID Logo  ; Teuteberg, Jeffrey 6 ; Cunningham, John P 7   VIAFID ORCID Logo  ; Langlotz, Curtis P 8   VIAFID ORCID Logo  ; Hiesinger, William 9   VIAFID ORCID Logo 

 Stanford University, Department of Cardiothoracic Surgery, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 Houston Methodist DeBakey Heart Centre, Department of Cardiovascular Medicine, Houston, USA (GRID:grid.63368.38) (ISNI:0000 0004 0445 0041) 
 Houston Methodist DeBakey Heart Centre, Department of Cardiothoracic Surgery, Houston, USA (GRID:grid.63368.38) (ISNI:0000 0004 0445 0041) 
 Spectrum Health Grand Rapids, Department of Cardiovascular Surgery, Grand Rapids, USA (GRID:grid.416230.2) (ISNI:0000 0004 0406 3236) 
 Stanford University, Department of Cardiovascular Medicine, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 Stanford University, Department of Cardiovascular Medicine, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956); Stanford Artificial Intelligence in Medicine Centre, Stanford, USA (GRID:grid.168010.e) 
 Columbia University, Department of Statistics, New York, USA (GRID:grid.21729.3f) (ISNI:0000000419368729) 
 Stanford Artificial Intelligence in Medicine Centre, Stanford, USA (GRID:grid.21729.3f); Stanford University, Department of Radiology and Biomedical Informatics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 Stanford University, Department of Cardiothoracic Surgery, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956); Stanford Artificial Intelligence in Medicine Centre, Stanford, USA (GRID:grid.168010.e) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2567801383
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.