It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present the design and the performance of a contact-less cryogenic rotation mechanism used in cosmic microwave background (CMB) experiments. A precise measurement of the CMB polarization is possible to verify the cosmic inflation theory that describes the very beginning (10−38 seconds) of the early universe. The polarization modulator, that rotates a half wave plate continuously at the aperture of the telescope, is one of the key instruments in the experiments. In order to reduce noise and systematic uncertainties, the polarization modulator is required a stable rotation with minimal heat dissipation in a cryogenic environment less than 20 K. Thus, we adopted the rotation mechanism that combines completely contact-less bearing and motor, a superconducting magnetic bearing, and a hollow bore synchronous motor. The heat dissipation and the load torque due to the friction can be minimized by avoiding physical contacts. We constructed the prototype of the rotation mechanism and carried out mechanical and thermal performance tests. A continuous rotation test in cryogenic temperature is performed, and it is confirmed that the rotation stability is less than 1% with the rotation frequency between 0.5 Hz and 3.0 Hz. We also conducted a thermal performance test, and obtained the heat dissipation at the rotor of 9.0 mW. We discussed the reduction of heat dissipation using a developed magnetic circuit with improved magnetic field uniformity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
2 ispace. inc., Sumitomo Shibakoen Building 10F, 2-7-17, Shiba, Minato-ku, Tokyo, 105-0014, Japan
3 Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
4 Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan