It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Borexino has provided an updated upper limit on the effective neutrino magnetic moment of solar neutrinos μβα < 2.8 x 10−11 μऔ at 90% C.L. This result represents nearly a factor of two improvement with respect to the previous result based on 192 days of the Phase-I data. The current analysis has been performed using 1291.5 days exposure of the Phase-II data, characterized by a further improved level of radio-purity of liquid scintillator. Another key ingredient of the new analysis, lowering the threshold from 260 to 186 keV, was possible thanks to a better understanding of the detector-response function at low energies. The global spectral fit was preformed up to 2970 keV energy, using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments. From the limit for the effective neutrino magnetic moment, new limits for the magnetic moments of the neutrino flavour states were derived.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Forschungszentrum Jülich and RTWH Aachen, Germany