It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Here we report investigation of red-shifted defect photoluminescence observed in two-dimensional colloidal cadmium selenide nanoplatelets. We used absorption, photoluminescence and photoluminescence excitation measurements to show that red-shifted photoluminescence bands are related directly to nanoplatelets and may originate from surface imperfections as well as be a result of interaction between different nanoplatelets in the solution. We also found that the defect photoluminescence may be easily altered by simple mechanical treatment, including sonication and stirring, thus disclosing the ways to control nanoplatelets emission over time.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Center of Optical Information Technologies, ITMO University, St. Petersburg 197101, Russia
2 School of Chemistry, Trinity College Dublin, Dublin 2, Ireland