It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An acoustic levitator uses an array of ultrasonic transducers to generate a standing acoustic pressure field which exerts a radiation force on small particles, allowing the particles to be trapped, relocated, separated or combined. Experiments on levitating particles of different densities and calculations of the acoustic radiation force and moment have been reported in the literature. However, direct inspection on the acoustic pressure field pattern is seldom carried out. This paper reports an investigation on the performance of an existing acoustic levitator design, which uses off-the-shelf components, by comparing the visualized pressure field from Schlieren imaging to analytical simulations. The ability to compare Schlieren imaging results to analytical simulations readily can prove to be a vital tool. Since the simulations provide an ideal pressure field, the imaging of the levitator pressure field can highlight discrepancies between the real and ideal cases. This can be especially useful as a diagnostic tool to identify the cause of a drop in performance of the acoustic levitator in a real world scenario.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan Tel.: +886-3-5712121 Ext.55121
2 Efficient Energy Transfer Department, Nokia Bell Labs, Blanchardstown, Dublin 15, Ireland
3 University College Dublin, Belfield, Dublin 4, Ireland