It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A hybrid trapped field magnet lens (HTFML) can reliably generate a concentrated magnetic field, B c, in the centre of the magnetic lens higher than the trapped field of the trapped field magnet (TFM) and the applied magnetic field, B app, even after the external magnetizing field decreased to zero. In this paper, the performance of HTFMLs consisting of EuBaCuO bulk TFM with various heights and a GdBaCuO bulk magnetic lens was investigated at 77 K using liquid nitrogen. A concentrated magnetic field of B c = 0.80 T was achieved at the centre of the HTFML for the tallest TFM after removing an applied magnetic field of B app = 0.50 T. The influence of the height of the outer TFM cylinder on the final concentrated field was studied experimentally and discussed using numerical simulation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda Morioka, Japan
2 Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
3 Department of Physics, Shanghai University, Shanghai, 200444, China