Full Text

Turn on search term navigation

© 2021 Jain et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Current approach for the detection of cancer is based on identifying genetic mutations typical to tumor cells. This approach is effective only when cancer has already emerged, however, it might be in a stage too advanced for effective treatment. Cancer is caused by the continuous accumulation of mutations; is it possible to measure the time-dependent information of mutation accumulation and predict the emergence of cancer? We hypothesize that the mutation history derived from the tandem repeat regions in blood-derived DNA carries information about the accumulation of the cancer driver mutations in other tissues. To validate our hypothesis, we computed the mutation histories from the tandem repeat regions in blood-derived exomic DNA of 3874 TCGA patients with different cancer types and found a statistically significant signal with specificity ranging from 66% to 93% differentiating Glioblastoma patients from other cancer patients. Our approach and findings offer a new direction for future cancer prediction and early cancer detection based on information derived from blood-derived DNA.

Details

Title
Glioblastoma signature in the DNA of blood-derived cells
Author
Jain, Siddharth; Mazaheri, Bijan; Raviv, Netanel; Bruck, Jehoshua
First page
e0256831
Section
Research Article
Publication year
2021
Publication date
Sep 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2570378502
Copyright
© 2021 Jain et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.