It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the present paper, the first results of an experimental analysis carried out to assess the performance of a water-to-water heat pump in which R1234yf and R1234ze(E) are used as drop-in substitutes of R134a are shown. The heat pump is first tested with R134a to establish a baseline performance and, then, is tested under the same working conditions, i.e. under the same water temperatures at evaporator and condenser outlets, with the above-mentioned HFO refrigerants. The results show that the heating capacity and COP of R1234yf system are up to 9.8% and 6.1% respectively lower than those obtained with R134a. On the other side, the use of R1234ze(E) leads to a capacity reduction and a COP reduction respectively up to 23.1% and 2.5%. A second set of tests is then carried out varying the rotational frequency of the compressor shaft in order to set the heat pump heating capacity to the same value found with R134a. The experimental results demonstrate that increases up to 17% and 50% are respectively needed for R1234yf and R1234ze(E), but subsequent reductions of heat pump COP up to 7.38% and 18.11% arise.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dipartimento di Energia, Politecnico di Milano, via Raffaele Lambruschini 4/A, 20156, Milano (MI), Italy