Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The feasibility of a neural network method was discussed in terms of a self-tuning proportional–integral–derivative (PID) controller. The proposed method was configured with two neural networks to dramatically reduce the number of tuning attempts with a practically achievable small amount of data acquisition. The first network identified the target system from response data, previous PID parameters, and response characteristics. The second network recommended PID parameters based on the results of the first network. The results showed that it could recommend PID parameters within 2 s of observing responses. When the number of trained data was as low as 1000, the performance efficiency of these methods was 92.9%, and the tuning was completed in an average of 2.94 attempts. Additionally, the robustness of these methods was determined by considering a system with noise or a situation when the target position was modified. These methods are also applicable for traditional PID controllers, thus enabling conservative industries to continue using PID controllers.

Details

Title
Optimization of Neural Network-Based Self-Tuning PID Controllers for Second Order Mechanical Systems
Author
Lee, Yong-Seok 1 ; Dong-Won, Jang 2 

 Department of Mechanical Engineering, School of Industrial and Mechanical Engineering, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong 18323, Korea; [email protected] 
 Department of Mechanical Engineering, Myongji University, Yongin 17058, Korea 
First page
8002
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2570585357
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.