It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
One major challenge to scaling quantum dot qubits is the dense wiring requirements, making it difficult to envision fabricating large 2D arrays of nearest-neighbor-coupled qubits necessary for error correction. We describe a method to ameliorate this issue by spacing out the qubits using superconducting resonators facilitated by 3D integration. To prove the viability of this approach, we use integration to couple an off-chip high-impedance TiN resonator to a double quantum dot in a Si/SiGe heterostructure. Using the resonator as a dispersive gate sensor, we tune the device down to the single electron regime with an SNR = 5.36. Characterizing the individual systems shows 3D integration can be done while maintaining low-charge noise for the quantum dots and high-quality factors for the superconducting resonator (single photon QL = 2.14 × 104 with Qi ≈ 3 × 105), necessary for readout and high-fidelity two-qubit gates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Wisconsin-Madison, Department of Physics, Madison, USA (GRID:grid.14003.36) (ISNI:0000 0001 2167 3675)
2 MIT Lincoln Laboratory, Lexington, USA (GRID:grid.504876.8) (ISNI:0000 0001 0684 1626)
3 MIT Lincoln Laboratory, Lexington, USA (GRID:grid.504876.8) (ISNI:0000 0001 0684 1626); Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786)