It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We approach the calculation of the nuclear matrix element of the neutrinoless double-β decay process, considering the light-neutrino-exchange channel, by way of the realistic shell-model. In particular the focus of our work is spotted on the role of the short-range correlations, which should be taken into account because of the short-range repulsion of the realistic potentials. Our shell-model wave functions are calculated using an effective Hamiltonian derived from the high-precision CD-Bonn nucleon-nucleon potential, the latter renormalized by way of the so-called Vlow-k approach. The renormalization procedure decouples the repulsive high-momentum component of the potential from the low-momentum ones by the introduction of a cutoff Λ, and is employed to renormalize consistently the two-body neutrino potentials to calculate the nuclear matrix elements of candidates to this decay process in mass interval ranging from A = 76 up to A = 136. We study the dependence of the decay operator on the choice of the cutoff, and compare our results with other approaches that can be found in present literature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy
2 Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy; Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”, viale Abramo Lincoln 5 - I-81100 Caserta, Italy