It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study aims to the physical and electrochemical properties of the supercapacitor carbon electrodes derived from pineapple leaf waste. The production of carbon electrodes was conducted using combinations of chemical activation, carbonization, and physical activation. The chemical activation was carried out using a 0.9 M KOH activator. The carbonization and physical activation were conducted using a one-step process. The PAL-AC electrode was obtained showed porosity in the mesoporous range, large pore volume, and high specific surface area. The surface morphology of the PAL-AC electrode is dominated by carbon and nanofibers particles. The nanofibers diameter based on the SEM micrograph is in the range of 44-137 nm. Elemental contents of the PAL-AC electrode are dominated by carbon and oxygen with an atomic percentage of 86.03% and 9.49%, respectively. The XRD pattern of the PAL-AC electrode shows the presence of two wide peaks at scattering angle of 23° and 45°. The specific capacitance of the PAL-AC electrode as high as 127 F g−1 in 6 M KOH electrolyte solution using two-electrode configuration. The pineapple leaf waste based-carbon electrodes show promising potential for use as supercapacitor electrodes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics, University of Riau, Simpang Baru, Pekanbaru 28293
2 Department of Chemical Engineering, University of Riau, Simpang Baru, Pekanbaru 28293
3 Department of Industrial Engineering, State Islamic University of Sultan Syarif Kasim, Simpang Baru (28293), Pekanbaru, Indonesia





