It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The best practise for structural damage detection currently relies on the installation of structural health monitoring systems for the collection of dedicated high frequency measurements. Switching to the employment of the wind turbine’s SCADA (Supervisory Control and Data Acquisition) signals and their commonly recorded low frequency statistics can lead to a reduction in the number of ad-hoc monitoring sensors and quantity of data required. In this paper, aero-hydro-servo-elastic simulations for a model of a turbine are used to assess its loads and any changes in the dynamics under healthy state and a damaged configuration case study. To prove the feasibility of the damage detection through low-resolution data, the statistics of the typically recorded signals from the SCADA and the structural monitoring systems are fed into a database for training and testing of classification algorithms. The ability of the machine learning models to generalise the classification for both stochasticity and uncertainties in the environmental conditions are tested. Decision tree-based classifiers showed the capability to capture the damage for the majority of the operating conditions considered. Though the setup of the traditional SCADA sensors had to be supplemented with an additional structural health monitoring sensor, the detection of the damage has been shown feasible by referring to low-frequency statistics only.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Naval Architecture, Ocean and Marine Engineering Department, University of Strathclyde, G11XQ Glasgow, United Kingdom
2 Ramboll Deutschland GmbH, 20095 Hamburg, Germany