Abstract

In this contribution, we show the implementation of the Link-variable method for solve the complete set of acopled non-linear time dependent Ginzburg-Landau differential equations in a three-dimensional homogeneous and isotropic mesoscopic superconducting system. In this case, the sample is immersed in an external magnetic d at zero applied current. The effects of demagnetization are taken in count and we show the order parameter and its phase in zero field cooling and field cooling process. This numerical analysis shows good results when this solution is applied to a superconducting cubic sample.

Details

Title
Brief numerical analysis of (3+1) Ginzburg-Landau equations
Author
Aguirre, C 1 ; Martins, Q 2 ; Barba-Ortega, J 3 

 Departamento de Física, Universidade Federal de Mato-Grosso, Cuiabá, Brasil 
 Departamento de Física, Universidade Federal de Rondônia, Jí-Paraná, Brasil 
 Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia; Foundation of Researchers in Science and Technology of Materials, Bucaramanga, Colombia 
Publication year
2020
Publication date
Oct 2020
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571215280
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.