Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The work describes the results of the first application of 2,6-bis(4-methoxybenzoyl)-diaminopyridine (L) for the recovery of noble metal ions (Au(III), Ag(I), Pd(II), Pt(II)) from aqueous solutions using two different separation processes: dynamic (classic solvent extraction) and static (polymer membranes). The stability constants of the complexes formed by the L with noble metal ions were determined using the spectrophotometry method. The results of the performed experiments clearly show that 2,6-bis(4-methoxybenzoyl)-diaminopyridine is an excellent extractant, as the recovery was over 99% for all studied noble metal ions. The efficiency of 2,6-bis(4-methoxybenzoyl)-diaminopyridine as a carrier in polymer membranes after 24 h of sorption was lower; the percentage of metal ions removal from the solutions (%Rs) decreased in following order: Ag(I) (94.89%) > Au(III) (63.46%) > Pt(II) (38.99%) > Pd(II) (23.82%). The results of the desorption processes carried out showed that the highest percentage of recovery was observed for gold and silver ions (over 96%) after 48 h. The results presented in this study indicate the potential practical applicability of 2,6-bis(4-methoxybenzoyl)-diaminopyridine in the solvent extraction and polymer membrane separation of noble metal ions from aqueous solutions (e.g., obtained as a result of WEEE leaching or industrial wastewater).

Details

Title
The Application of 2,6-Bis(4-Methoxybenzoyl)-Diaminopyridine in Solvent Extraction and Polymer Membrane Separation for the Recovery of Au(III), Ag(I), Pd(II) and Pt(II) Ions from Aqueous Solutions
Author
Bożejewicz, Daria 1   VIAFID ORCID Logo  ; Witt, Katarzyna 1   VIAFID ORCID Logo  ; Kaczorowska, Małgorzata A 1   VIAFID ORCID Logo  ; Urbaniak, Włodzimierz 2 ; Ośmiałowski, Borys 3   VIAFID ORCID Logo 

 Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 3 Seminaryjna Street, PL 85326 Bydgoszcz, Poland; [email protected] (K.W.); [email protected] (M.A.K.) 
 Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, PL 61712 Poznań, Poland; [email protected] 
 Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, PL 87100 Toruń, Poland; [email protected] 
First page
9123
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571237494
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.