Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effect of superplasticiser, borax and the water-to-cement ratio on BYF hydration and mechanical strengths has been studied. Two laboratory-scale BYF cements—st-BYF (with β-C2S and orthorhombic C4A3 S¯) and borax-activated B-BYF (with α’H-C2S and pseudo-cubic C4A3 S¯)—have been used, and both show similar particle size distribution. The addition of superplasticiser and externally added borax to BYF pastes has been optimised through rheological measurements. Optimised superplasticiser contents (0.3, 0.4 and 0.1 wt % for st-BYF, B-BYF and st-BYF with externally added 0.25 wt % B2O3, respectively) result in low viscosities yielding homogeneous mortars. The calorimetric study revealed that st-BYF is more reactive than B-BYF, as the values of heat released are 300–370 J/g and 190–210 J/g, respectively, after 7 days of hydration; this fact is independent of the water-to-cement ratio. These findings agree with the higher degree of hydration at 28 days of β-C2S in st-BYF (from 45 to 60%) than α’H-C2S in B-BYF (~20 to 30%). The phase assemblage evolution has been determined by LXRPD coupled with the Rietveld method and MAS-NMR. The formation of stratlingite is favoured by increasing the w/c ratio in both systems. Finally, the optimisation of fresh BYF pastes jointly with the reduction of water-to-cement ratio to 0.40 have allowed the achieving of mortars with compressive strengths over 40 MPa at 7 days in all systems. Moreover, the st-BYF mortar, where borax was externally added, achieved more than 70 MPa after 28 days. The main conclusion of this work does not support Lafarge’s approach of adding boron/borax to the raw meal of BYF cements. This procedure stabilises the alpha belite polymorph, but its reactivity, in these systems, is lower and the associated mechanical strengths poorer.

Details

Title
Effect of Boron and Water-to-Cement Ratio on the Performances of Laboratory Prepared Belite-Ye’elimite-Ferrite (BYF) Cements
Author
Pérez-Bravo, Raquel 1 ; Morales-Cantero, Alejandro 1 ; Bruscolini, Margherita 2 ; Aranda, Miguel A G 1   VIAFID ORCID Logo  ; Santacruz, Isabel 1   VIAFID ORCID Logo  ; Angeles G De la Torre 1   VIAFID ORCID Logo 

 Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus Teatinos, Universidad de Málaga, 29010 Málaga, Spain; [email protected] (R.P.-B.); [email protected] (A.M.-C.); [email protected] (M.A.G.A.); [email protected] (I.S.) 
 Dipartimento di Scienze Della Terra, Università Degli Studi di Milano, Via Botticelli 23, I20133 Milano, Italy; [email protected] 
First page
4862
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571395577
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.