Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The novel use of ionic liquid as a solvent for biodegradable and natural organic biomaterials has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical properties of the films. The change in the morphology of the biocomposites (by scanning electron microscope, SEM) and their secondary structure analysis (by Fourier-transform infrared spectroscopy, FTIR) showed that the samples underwent a wavering conformational change on a microscopic level, resulting in strong interactions and changes in their crystalline structures such as the CA crystalline and silk beta-pleated sheets once the different ratios were applied. Differential scanning calorimetry (DSC) results demonstrated that strong molecular interactions were generated between CA and silk chains, providing the blended films lower glass transitions than those of the pure silk or cellulose acetate. All films that were blended had higher thermal stability than the pure cellulose acetate sample but presented gradual changes amongst the changing of ratios, as demonstrated by thermogravimetric analysis (TGA). This study provides the basis for the comprehension of the protein-polysaccharide composites for various biomedical applications.

Details

Title
Silk-Cellulose Acetate Biocomposite Materials Regenerated from Ionic Liquid
Author
Rivera-Galletti, Ashley 1 ; Gough, Christopher R 1   VIAFID ORCID Logo  ; Kaleem, Farhan 2 ; Burch, Michael 2 ; Ratcliffe, Chris 2 ; Lu, Ping 3   VIAFID ORCID Logo  ; Salas-de la Cruz, David 4   VIAFID ORCID Logo  ; Hu, Xiao 5   VIAFID ORCID Logo 

 Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; [email protected] (A.R.-G.); [email protected] (C.R.G.); [email protected] (F.K.); [email protected] (M.B.); [email protected] (C.R.); Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; [email protected] 
 Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; [email protected] (A.R.-G.); [email protected] (C.R.G.); [email protected] (F.K.); [email protected] (M.B.); [email protected] (C.R.) 
 Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; [email protected] 
 Department of Chemistry, Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; [email protected] 
 Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; [email protected] (A.R.-G.); [email protected] (C.R.G.); [email protected] (F.K.); [email protected] (M.B.); [email protected] (C.R.); Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA 
First page
2911
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571465368
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.