Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Falling is a common incident that affects the health of elder adults worldwide. Postural instability is one of the major contributors to this problem. In this study, we propose a supplementary method for measuring postural stability that reduces doctor intervention. We used simple clinical tests, including the timed-up and go test (TUG), short form berg balance scale (SFBBS), and short portable mental status questionnaire (SPMSQ) to measure different factors related to postural stability that have been found to increase the risk of falling. We attached an inertial sensor to the lower back of a group of elderly subjects while they performed the TUG test, providing us with a tri-axial acceleration signal, which we used to extract a set of features, including multi-scale entropy (MSE), permutation entropy (PE), and statistical features. Using the score for each clinical test, we classified our participants into fallers or non-fallers in order to (1) compare the features calculated from the inertial sensor data, and (2) compare the screening capabilities of the multifactor clinical test against each individual test. We use random forest to select features and classify subjects across all scenarios. The results show that the combination of MSE and statistic features overall provide the best classification results. Meanwhile, PE is not an important feature in any scenario in our study. In addition, a t-test shows that the multifactor test of TUG and BBS is a better classifier of subjects in this study.

Details

Title
Random Forest for Automatic Feature Importance Estimation and Selection for Explainable Postural Stability of a Multi-Factor Clinical Test
Author
Mendoza, Tomas 1 ; Chia-Hsuan, Lee 2 ; Chien-Hua, Huang 3 ; Tien-Lung Sun 1   VIAFID ORCID Logo 

 Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan Tung Road, Chungli District, Taoyuan 320, Taiwan; [email protected] 
 Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Da’an District, Taipei 106, Taiwan; [email protected] 
 Department of Eldercare, Central Taiwan University of Science and Technology, Taipei 106, Taiwan; [email protected] 
First page
5930
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571519798
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.