Abstract

Breath analysis is useful for the diagnosis of human diseases and monitoring of metabolic status. However, because of the low concentrations and the large numbers of compounds in the breath, the breath analysis requires highly sensitive and highly selective instruments to identify and determine the concentrations of certain biomarkers [1]. Various methods developed over the past 20 years to detect biomarker gases [2]. CO2 laser photoacoustic spectroscopy offers a sensitive technique for the detection and monitoring of gas footprints at low concentrations [3]. The performance of photoacoustic spectrometer (PAS) examined with intracavity configuration. In this research, the highest observed intracavity power was (49,96 ± 0,02) W for active medium gas composition He: N2: CO2 at 30:50:50. The highest laser absorption line for standard acetone gas set at 10P20, and the lowest detection limit set at (30 ± 4) ppb. For application purposes, the photoacoustic spectrometer was used to measure the concentration of acetone gas in exhaled gases from a group of patients with type 2 diabetes mellitus and a group of healthy volunteers. Exhaled gas sampling method took manually, and the measurement result was examined using multicomponent analysis. The measurement showed that the highest acetone gas concentration for type 2 diabetes mellitus patients was (162 ± 3) × 10 ppb and the lowest one was (101 ± 3) × 10 ppb. Furthermore, for healthy volunteers, the highest acetone gas concentration was (85 ± 3) × 10 ppb and the lowest one was (15 ± 3) × 10 ppb.

Details

Title
The Performance of CO2 Laser Photoacoustic Spectrometer In Concentration Acetone Detection As Biomarker For Diabetes Mellitus Type 2
Author
Tyas, F H 1 ; Nikita, J G 1 ; Apriyanto, D K 1 ; Mitrayana 1 ; Amin, M N 1 

 Department of Physics, Universitas Gadjah Mada, Yogyakarta, INDONESIA 
Publication year
2018
Publication date
Apr 2018
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2572237129
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.