It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The quality of modern patient radiotherapy treatment is strongly dependent on reliable and accurate dosimetry techniques. Although desirable, in situ and in vivo dosimetry is usually hard to implement in routine radiotherapy procedures. The potential use of nanoparticles has been recently considered for biomedical applications achieving promising performance for diagnosis as well as therapeutic practices. The present work reports about a novel proposal based on the use of high atomic number nanoparticles for online estimation of absorbed dose during conventional radiotherapy treatment. In this first phase, the investigation handles with experimental and theoretical tasks regarding the potential use of the variations in the annihilation peak and its correlation with the presence of high atomic number nanoparticles acting as signal enhancers. Dedicated Monte Carlo simulations are also presented in order to complement experimental results and theoretical models. Although the correlation between annihilation peak with the presence of nanoparticles was successfully confirmed, further investigations are still necessary in order to estimate feasible absorbed dose from determinations of annihilation peaks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Instituto de Física E. Gaviola – CONICET, Argentina; Laboratorio de Investigaciones e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X – LIIFAMIRX, FaMAF, Universidad Nacional de Córdoba, Argentina
2 Laboratorio de Investigaciones e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X – LIIFAMIRX, FaMAF, Universidad Nacional de Córdoba, Argentina
3 Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina; Centro de Física e Ingeniería en Medicina, Universidad de La Frontera, Chile
4 Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina
5 Laboratorio de Investigaciones e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X – LIIFAMIRX, FaMAF, Universidad Nacional de Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina
6 Centro de Física e Ingeniería en Medicina, Universidad de La Frontera, Chile; Departamento de Ciencias Físicas, Universidad de La Frontera, Chile
7 ICOS Inmunomédica, Temuco, Chile
8 Instituto de Física E. Gaviola – CONICET, Argentina; Laboratorio de Investigaciones e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X – LIIFAMIRX, FaMAF, Universidad Nacional de Córdoba, Argentina; Centro de Física e Ingeniería en Medicina, Universidad de La Frontera, Chile; Departamento de Ciencias Físicas, Universidad de La Frontera, Chile