It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Efficient molecular oxygen activation is crucial for catalytic oxidation reaction, but highly depends on the construction of active sites. In this study, we demonstrate that dual adjacent Fe atoms anchored on MnO2 can assemble into a diatomic site, also called as MnO2-hosted Fe dimer, which activates molecular oxygen to form an active intermediate species Fe(O = O)Fe for highly efficient CO oxidation. These adjacent single-atom Fe sites exhibit a stronger O2 activation performance than the conventional surface oxygen vacancy activation sites. This work sheds light on molecular oxygen activation mechanisms of transition metal oxides and provides an efficient pathway to activate molecular oxygen by constructing new active sites through single atom technology.
Efficient oxygen activation is crucial for catalytic oxidation reaction, but highly depends on the construction of active sites. Here, dual adjacent Fe atoms anchored on MnO2 can assemble into a diatomic site, which activates molecular oxygen to form an active intermediate species Fe(O = O)Fe for CO oxidation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Central China Normal University, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Wuhan, P. R. China (GRID:grid.411407.7) (ISNI:0000 0004 1760 2614)