It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The next generation of neutrino experiments requires measurements of absolute neutrino cross sections at the GeV scale with high precision (∼1%) presently limited by the uncertainties on neutrino flux. Monitoring the lepton production in the decay tunnel of neutrino beams is the most straightforward way to measure the neutrino flux at source. The ENUBET Collaboration develops novel technologies to monitor positrons from K + → νee +π0 decays on an event by event basis. This technique can achieve a precision in the νe flux below 1% and enable a new generation of cross section and short baseline experiments. In this paper, we present the achievements of the first year of the Project on beamline simulation, rate and dose assessment, detector prototyping and evaluation of the physics reach.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Phys. Dep. Università degli Studi dell’Insubria, via Valeggio 11, Como, Italy; INFN, Sezione di Milano-Bicocca, piazza della Scienza 3, Milano, Italy
2 INFN, Sezione di Milano-Bicocca, piazza della Scienza 3, Milano, Italy; Phys. Dep. Università di Milano-Bicocca, piazza della Scienza 3, Milano, Italy
3 INFN, Sezione di Milano-Bicocca, piazza della Scienza 3, Milano, Italy
4 INFN Sezione di Padova, via Marzolo, 8 - Padova, Italy
5 CERN, Geneva, Switzerland
6 INFN Laboratori Nazionali di Legnaro, Viale dell’Università, 2, Legnaro (PD), Italy
7 INFN Sezione di Bari, via Amendola, 173 - Bari, Italy
8 INFN, Sezione di Bologna, viale Berti-Pichat 6/2, Bologna, Italy
9 INFN Sezione di Padova, via Marzolo, 8 - Padova, Italy; Phys. Dep. Università di Padova, via Marzolo, 8 - Padova, Italy
10 INFN, Sezione di Napoli, via Cinthia, 80126, Napoli, Italy; Phys. Dep. Università degli Studi di Napoli Federico II, via Cinthia, Napoli, Italy
11 Fondazione Bruno Kessler (FBK) and INFN TIFPA, Trento, Italy
12 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
13 Institute of Nuclear Research of the Russian Academy of Science, Moscow, Russia
14 INFN, Sezione di Roma 1, piazzale A. Moro 2, Rome, Italy; Phys. Dep. Università La Sapienza, piazzale A. Moro 2, Rome, Italy
15 INFN, Sezione di Roma 1, piazzale A. Moro 2, Rome, Italy
16 CENBG, Université de Bordeaux, CNRS/IN2P3, 33175 Gradignan, France
17 INFN, Laboratori Nazionali di Frascati, via Fermi 40, Frascati (Rome), Italy
18 INFN, Sezione di Napoli, via Cinthia, 80126, Napoli, Italy
19 INFN, Sezione di Bologna, viale Berti-Pichat 6/2, Bologna, Italy; Phys. Dep. Università di Bologna, viale Berti-Pichat 6/2, Bologna, Italy
20 INFN Sezione di Trieste, via Valerio, 2 - Trieste, Italy