It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The ALPHA experiment at CERN is designed to produce and trap antihydrogen to the purpose of making a precise comparison with hydrogen. The basic technique consists of driving an antihydrogen resonance which will cause the antiatom to leave the trap and annihilate. The main background to antihydrogen detection is due to cosmic rays. When an experimental cycle extends for several minutes, while the number of trapped antihydrogen remains fixed, background rejection can become challenging. Machine learning methods have been employed in ALPHA for several years, leading to a dramatic reduction of the background contamination. This allowed ALPHA to perform the first laser spectroscopy experiment on antihydrogen.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 TRIUMF, 4004 Wesbrook Mall, Vancouver BC V6T 2A3, Canada