It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the present work, a hybrid micro macro-approach was adopted to investigate the material behavior of the A5XXX-O object of the Benchmark 3 of Numisheet2018. Starting from the provided uniaxial stress-strain curve and in house microstructure measurements, a mean field approach, by using the VPSC7c code, was used to perform numerical experiments in order to derive the anisotropic macroscopic behavior of the aluminum alloy.
Then, at the macroscale, a constitutive model was built on coupling a non-quadratic yield surface function with a damage model developed in the framework of the continuum damage mechanics. Finally, by using MSC.Marc2017.1, finite element simulations of uniaxial and Nakajima bulging tests were performed with the purpose of obtaining the Fracture Forming Limit Curve for the aluminum alloy under investigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 DICeM, University of Cassino and Southern Lazio, Via G. Di Biasio 43, Cassino 03043, Italy
2 Department of Physics, Chalmers University of Technology, Gothenburg, Sweden