It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The austral spring climate of 2020 was characterised by the occurrence of La Niña, which is the most predictable climate driver of Australian springtime rainfall. Consistent with this La Niña, the Bureau of Meteorology’s dynamical sub-seasonal to seasonal forecast system, ACCESS-S1, made highly confident predictions of wetter-than-normal conditions over central and eastern Australia for spring when initialised in July 2020 and thereafter. However, many areas of Australia received near average to severely below average rainfall, particularly during November. Possible causes of the deviation of rainfall from its historical response to La Niña and causes of the forecast error are explored with observational and reanalysis data for the period 1979–2020 and real-time forecasts of ACCESS-S1 initialised in July to November 2020. Several compounding factors were identified as key contributors to the drier-than-anticipated spring conditions. Although the ocean surface to the north of Australia was warmer than normal, which would have acted to promote rainfall over northern Australia, it was not as warm as expected from its historical relationship with La Niña and its long-term warming trend. Moreover, a negative phase of the Indian Ocean Dipole mode, which typically acts to increase spring rainfall in southern Australia, decayed earlier than normal in October. Finally, the Madden–Julian Oscillation activity over the equatorial Indian Ocean acted to suppress rainfall across northern and eastern Australia during November. While ACCESS-S1 accurately predicted the strength of La Niña over the Niño3.4 region, it over-predicted the ocean warming to the north of Australia and under-predicted the strength of the November MJO event, leading to an over-prediction of the Australian spring rainfall and especially the November-mean rainfall.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Bureau of Meteorology, Melbourne, Australia (GRID:grid.1527.1) (ISNI:000000011086859X)
2 University of Melbourne, School of Geography, Earth, and Atmospheric Sciences and ARC Centre of Excellence for Climate Extremes, Parkville, Australia (GRID:grid.1008.9) (ISNI:0000 0001 2179 088X)
3 Bureau of Meteorology, Melbourne, Australia (GRID:grid.1527.1) (ISNI:000000011086859X); Monash University, School of Earth Atmosphere and Environment, Clayton, Australia (GRID:grid.1002.3) (ISNI:0000 0004 1936 7857)