Abstract

Dual-energy X-ray absorptiometry (DXA) is underutilized to measure bone mineral density (BMD) and evaluate fracture risk. We present an automated tool to identify fractures, predict BMD, and evaluate fracture risk using plain radiographs. The tool performance is evaluated on 5164 and 18175 patients with pelvis/lumbar spine radiographs and Hologic DXA. The model is well calibrated with minimal bias in the hip (slope = 0.982, calibration-in-the-large = −0.003) and the lumbar spine BMD (slope = 0.978, calibration-in-the-large = 0.003). The area under the precision-recall curve and accuracy are 0.89 and 91.7% for hip osteoporosis, 0.89 and 86.2% for spine osteoporosis, 0.83 and 95.0% for high 10-year major fracture risk, and 0.96 and 90.0% for high hip fracture risk. The tool classifies 5206 (84.8%) patients with 95% positive or negative predictive value for osteoporosis, compared to 3008 DXA conducted at the same study period. This automated tool may help identify high-risk patients for osteoporosis.

Dual-energy X-ray absorptiometry and the Fracture Risk Assessment Tool are recommended tools for osteoporotic fracture risk evaluation, but are underutilized. Here, the authors present an opportunistic tool to identify fractures, predict bone mineral density and evaluate fracture risk using plain pelvis and lumbar spine radiographs.

Details

Title
Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning
Author
Chen-I, Hsieh 1   VIAFID ORCID Logo  ; Kang, Zheng 2   VIAFID ORCID Logo  ; Lin Chihung 3 ; Ling, Mei 4 ; Lu, Le 5   VIAFID ORCID Logo  ; Li, Weijian 5 ; Fang-Ping, Chen 6   VIAFID ORCID Logo  ; Wang Yirui 7   VIAFID ORCID Logo  ; Zhou, Xiaoyun 7   VIAFID ORCID Logo  ; Wang Fakai 7   VIAFID ORCID Logo  ; Xie Guotong 8   VIAFID ORCID Logo  ; Xiao, Jing 8   VIAFID ORCID Logo  ; Miao Shun 7   VIAFID ORCID Logo  ; Chang-Fu, Kuo 9   VIAFID ORCID Logo 

 Chang Gung Memorial Hospital, Division of Rheumatology, Allergy and Immunology, Taoyuan, Taiwan (GRID:grid.413801.f) (ISNI:0000 0001 0711 0593) 
 PAII Inc., Bethesda, USA (GRID:grid.413801.f) 
 Chang Gung Memorial Hospital, Center for Artificial Intelligence in Medicine, Taoyuan, Taiwan (GRID:grid.413801.f) (ISNI:0000 0001 0711 0593) 
 Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China (GRID:grid.464460.4) 
 PAII Inc., Bethesda, USA (GRID:grid.464460.4) 
 Chang Gung University, Kwei-Shan, Department of Medicine, College of Medicine, Taoyuan, Taiwan (GRID:grid.145695.a); Keelung Chang Gung Memorial Hospital, Department of Obstetrics and Gynecology, Osteoporosis Prevention and Treatment Center, Keelung, Taiwan (GRID:grid.454209.e) (ISNI:0000 0004 0639 2551) 
 PAII Inc., Bethesda, USA (GRID:grid.454209.e) 
 Ping An Insurance (Group) Company of China, Ltd., Shenzhen, China (GRID:grid.454209.e) 
 Chang Gung Memorial Hospital, Division of Rheumatology, Allergy and Immunology, Taoyuan, Taiwan (GRID:grid.413801.f) (ISNI:0000 0001 0711 0593); PAII Inc., Bethesda, USA (GRID:grid.413801.f); Chang Gung University, Kwei-Shan, Department of Medicine, College of Medicine, Taoyuan, Taiwan (GRID:grid.145695.a) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2573126188
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.